
When providing a native mobile 
app ruins the security of your
existing web solution

CyberSec Conference 2015
05/11/2015 – Jérémy MATOS



whois securingapps

Developer background
Spent last 10 years working between Geneva and Lausanne
on security products and solutions

Focus on mobile since 2010
Now software security consultant at my own company

http://www.securingapps.com
Provide services to build security in software

Mobile
Web
Cloud
Internet Of Things

https://twitter.com/securingapps



Introduction

Providing mobile apps is required by business
Native is often the choice

Usability
Performance
Connectivity issues

Most of the time integration to existing web solution is not 
straightforward, e.g.

Authentication logic/pages provided by application server
Offline mode to be addressed

As a consequence, it is tempting to move some code from
server side to mobile app
But it cannot be trusted anymore …



Objectives

Demonstrate a loss of revenue can occur via the exploitation of a 
real world Android application, though web solution seems OK
Choice of target: French magazines reading app

Motivation: renewal subscription bug
Received twice the electronic version at the beginning but none at the end

Not sensitive content as it is public (but not free)
Some kind of DRM in place to restrict the number of usable mobile devices

Code of conduct
Privacy matters, don’t mess with user data
Responsible disclosure

Bonus: read content freely on any mobile or 
non-mobile device



Strategy

Define precisely what will be checked given the objectives

1. Access control
http monitoring to see how documents are referenced server side
Use self service property of the system

My personal account with paid content
Creation of other free accounts

2. Authentication of mobile services
http monitoring to see how document requests are authorized
reverse engineering of the mobile app to understand
authentication token management 
=> Android version far easier to read + latest update January 2014



Access Control 1/3

HTTP monitoring with BURP
Fresh app install, then configure proxy
Login with paying account
Download a magazine already subscribed

POST requests with JSON payload as parameter
No HTTPS !

No need to add a certificate on the mobile device to do MITM
And even less to modify the app to bypass certificate pinning

3 different hostnames involved
All run PHP 5.2.17 (January 2011….)
Windows based: IIS 7.5 or Apache 2.2.19 Win32 (June 2011...)

Increased confidence that security was not the priority



Access Control 2/3



Access Control 3/3

Access control validation
Create free account: web only, no email validation
Login with free account to retrieve auth token
Replay previous requests but use the free auth token

Bypass results
User publications list
Documents list
Screenshots
Document download info
Document content/DRM

Screenshots of 
all magazines 
are publicly
accessible



Authentication 1/9

Reverse engineer app to see the authentication token content

Retrieve APK: e.g from apk-dl.com
Avoid running this binary, or in an emulator (e.g genymotion)

Convert Dalvik bytecode to Java bytecode
enjarify tool provides better results than older dex2jar

Static review of corresponding source code with JD-GUI

Dynamic analysis: used later in Bonus section



Authentication 2/9

Nothing is obfuscated
Easily look for auth in the source code

In the JsonSender class



Authentication 3/9

Encrypt method

Key and IV



Authentication 4/9

Done with a few lines of Python

Decrypt auth token
understand what is sent to server
easier than figuring it out from source code

Spoof the server
modify clear text content of token
encrypt it to have it accepted by server



Authentication 5/9



Authentication 6/9

Quick look at userIdand sessionId
32 bits positive integers (?)
even numbers for both accounts

Create 10 free accounts in a batch
Login/password accepted on mobile only a few minutes later
userId is a sequence incremented by 2
sessionId are all even numbers
In binary form, it is obvious they are all multiple of 2^16

Googling for « PHP windows random»:
randmethod is predictable and range on Windows is 2^15



Authentication 7/9

Source code of rand method is available:

Successfully predicts values on 
Win10 + PHP 5.6
Yet no link found between 10 
latest sessionId

Bruteforce is a reasonable strategy
userId are known
only 32768 possible sessionId
sessionId is valid at least several days
no link to user data (web access requires login/password)



Authentication 8/9

Bruteforce 1 free account to determine locking behavior

No locking at all
Possible to bruteforce account by account
Or find accounts with a given sessionId (locking resilient)

Response time > 8s when invalid sessionId, <0.5s otherwise
DRM server in practice has 2 hostnames (load balancing)

Strategy
Search for accounts with paying content (non empty list of publications)
From more recent to older: 
more likely to have an up to date subscription



Authentication 9/9



Authentication bypass 

Inject userId+sessionId
of a paying account in 
the mobile login response
of a free account.

After a few hours of 
bruteforce, several
accounts with latest
magazines found.



Bonus 1/3

Following reversed source code
Asymetric crypto

Document encrypted with public key
Private key in cryptoinfos.dat file

FixedSecureRandom: overloaded to return a constant !
Decrypted document: proprietary format

Pictures (full page content)
Text (to enable copy/paste & search)
Xml metadata (index, page summaries, etc …)

Java library with dozens of classes to display document
=> not easy to isolate corresponding code
Easier to hook application when rendering pictures



Bonus 2/3

Use Xposed framework
Overload application behavior by intercepting calls in the virtual machine
No change to the application apk file

Prepare device
Jailbreak required to install Xposed hooking library
Terminal application to check su command and browse content
File sharing tool to export efficiently captured pages
Very easy with the genymotion solution

Implement hook with Android Studio as an independant apk
Export pages at full resolution as png files on document loading

Install hook apk and activate it in Xposed config
Restart device



Bonus 3/3

Iterate on all pages with an afterHookedMethodon loadPage
call loadPage(nextPage)via introspection 

Easy to add another afterHookedMethod injecting
userId+sessionId



Recommendations 1/3

When providing a native mobile app, start with a threat model
Target population: self service, existing premium accounts, etc..
Limit rights per user or device ?
Offline features required ?
Intellectual property to be included in the app ?

Server side: ensure security logic is robust
Authentication: stateful (e.g cookie) vs stateless (e.g JSON web token)
Access control: to be enforced on each and every available web service
Error conditions should return generic content, but log everything
Thorough unit testing, including abuse cases



Recommendations 2/3

Client side: consider all source code as public for Android
Avoid embedding any sensitive logic: ask the server to do it
Keep in mind that bypassing/replacing code is easy for an attacker
using hooking (including jailbreak/emulator checks)
Obfuscate to make reverse engineering longer: Proguard cost is 0
Also consider writing some essential logic in C (NDK)

Use SSL with certificate pinning for all network calls
Performance is not an issue anymore
Self signed certificates are free
Pinning is a must have to make MITM attacks/debugging more difficult
Check your SSL server configuration with
https://www.ssllabs.com/ssltest/



Recommendations 3/3

Don’t play with crypto except if absolutely necessary
Hashing is very often the good solution for authentication
Very easy to do bad key management for encryption

Hard to keep secrets
Key renewal to be designed from the beginning

Ensure to have good random generators
DRM can always be broken with effort

Plan a budget for security updates
Publication in appstores (deprecated APIs, vulnerable libs, etc…)
Patching of servers



Thank you !

Any question

contact@securingapps.com


