
Abusing Android In-app Billing
feature thanks to a
misunderstood integration

Bsides Lisbon 17
10/11/2017 – Jérémy MATOS

whois securingapps

Developer background
Worked last 10 years in Switzerland on security products and
solutions

Focus on mobile since 2010
OWASP Geneva co-chapter leader
Now freelance application security consultant
Consulting to build security in software

Mobile
Web
Cloud
Internet Of Things
Bitcoin/Blockchain @Securingapps

Agenda

1. Android In-app billing in a nutshell

2. Real-life exploitation in a rather popular game:
getting free credits
Java reverse engineering
Writing a Java hook with Xposed framework
Bytecode patching of application and redistribution

3. Lessons learned

4. Recommendations

1. Android In-app billing in a nutshell

Goal: show that Java reverse engineering can cause a loss of
value in real-life
Target: Android In-app billing feature

Allow developers to sell content in their app, e.g.
subscribtions to magazines
premium features
extra content in games

Payment is handled by Google
Requires Google Play services
No credit card data exposed to developers

Documentation available at
https://developer.android.com/google/play/billing/index.html

1. Android In-app billing in a nutshell

2. Real-life exploitation 1/13

(Used to be) rather popular game: PandaPop

In-app purchases to buy credits
New weapons
Extra lifes

Step 1: Download the APK archive: e.g. from apk-dl.com
Avoid executing this binary, or in an emulator

2. Real-life exploitation 2/13

Step 2: Prepare emulator

1. We will use Genymotion emulator
Fast (thanks to x86 image)
Rooting possible in 1 click
Free version available

2. Install Google Play Services in Genymotion device
Drag/drop ARM translation zip + restart
Drag/drop gapps-lp-<verions>.zip

Google Play errors are normal
Wait for the various updates to take place
At one point, provide a valid gmail account

2. Real-life exploitation 3/13

Step 3: use jadx free tool to convert automatically
an APK in readable Java source code

1. converts Dalvik bytecode to Java bytecode
2. decompiles Java bytecode in Java source code
3. displays the results in an IDE for analysis

Step 4: Look for instances of IInAppBillingService
This interface cannot be renamed

Nothing is obfuscated!

2. Real-life exploitation 4/13

Step 5: Easily review related implementation classes
Fascinating code in method purchaseProduct of class
com.prime31.GoogleIABPlugin

Step 6: Find out what android.test.purchased means
Google is our friend
https://developer.android.com/google/play/billing/billing_testing.html

2. Real-life exploitation 5/13

Step 7: force value to android.test.purchased and
see what happens

Let’s write a hook that forces sku of purchaseProduct
to this value

Using Xposed framework
Overload the behavior of an application by intercepting calls in the
Dalvik virtual machine
No change to the original apk file
Implement a hook with Android Studio in an independent apk

2. Real-life exploitation 6/13

Prerequisites
Rooted device to installed the Xposed libraries
Emulator (to avoid smartphone bricking…)

Install hooking framework in Genymotion device

Install terminal application
Drag/drop terminal.apk
Start it and type su
Check that root access is prompted and validate you are really root on the device

Drag/drop XposedInstaller_3.1.apk
Start it and choose install
Reboot the Genymotion device

2. Real-life exploitation 7/13

2. Real-life exploitation 8/13

Step 8: Deploy hook
Build hook apk with Android Studio
Copy it to Genymotion device
Activate hook in Xposed configuration panel
Reboot Genymotion device
Enjoy free credits

Why does it work ?
According to Google documentation, no signature is returned
with this test value so verification should fail
The vulnerability is easy to find in the reversed source code

2. Real-life exploitation 9/13

Security bypass
for test value
in production code

2. Real-life exploitation 10/13

Step 9: Bytecode patching
Hook requires a rooted smartphone
We want to update the original apk to be able to deploy it on any device

Android doesn’t use Java bytecode but Smali
classes.dex contains the Java classes converted to Smali bytecode
Smali bytecode can be transformed back and forth to human readble
instructions

Principle
Get readable smali of original class
Get readable smali of hook
Manual merge hook in original class
Rebuild the APK with the new smali code (including signature)

2. Real-life exploitation 11/13

Convert APK to readable smali with command
java -jar apktool.jar d your.apk

Edit manually smali code in your/smali

Recompiling with apktool loses native library, instead
cp your.apk yourPatched.apk
java -jar smali_2.1.1.jar your/smali -o classes.dex
(to compile smali code)
zip yourPatched.apk classes.dex
zip --delete yourPatched.apk "META-INF/*"
(to delete the existing signature)

2. Real-life exploitation 12/13

2. Real-life exploitation 13/13

Sign the APK with the key of your choice !
Generate a new signing key with
keytool -genkey -v -keystore patch.keystore -alias patch -keyalg RSA -
keysize 2048 -validity 10000

Enter whatever your want in password and certificate info

Sign APK with jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -
keystore patch.keystore yourPatched.apk patch

Ensure signature is OK jarsigner -verify -verbose -certs yourPatched.apk

Deploy to a non rooted device and play ;)
We could even publish in the Play Store under a new name !

3. Lessons learned 1/4

Never let debug code in production app
Special test cases should be removed for official build !
Poor design choice by Google to accept test value in production

An access control decision client side is insecure by design

Google documentation is misleading: cf
https://developer.android.com/google/play/billing/billing_best_practices.html

3. Lessons learned 2/4

in-app billing can’t be used to buy credits
Designed to purchase original content that is not guessable
Otherwise always possible to modify the counter via hooking
or bytecode patching

3. Lessons learned 3/4

Responsible disclosure: no one cared

Game editor of PandaPop:
/dev/null

Prime 31: wrote the Android in-app purchase integration code

Round 1: Quick feedback through their ticketing tool
« This vulnerability doesn’t make any sense »
« The developer should be checking the sku of the purchased product »

Round 2: I buy the plugin 70 USD
Unity plugin: C# wrapper on top of Java Android API
I am supposed to receive integration documents

3. Lessons learned 4/4

Developer doc is in fact just a link to their basic website

Yet API supports signature verification on an external server
But provided C# demo does not use it

Round 3: detailed slides back to Prime 31
« Excellent! Many thanks for these, I look forward to reading them today »
Since then: /dev/null
As a customer I don’t get any fix

4. Recommendations

0. Use Proguard obfuscation to slow down a reverser

1. Use NDK to embed sensitive logic in C code
With JNI possible to call C librairies via the native keyword
Much more effort to reverse and patch binary code (e.g ARM)

2. Use a backend for validating purchases
Still possible to hook/patch the response of the server

3. Only sell « real » content
and not something easy to guess like a counter
e.g Angry Birds sell extra levels
and they also use NDK for calls to validation server

4. Recommendations

Conclusion

Android Java reverse engineering is really easy with jadx

You cannot trust the Java code running in your Android app
Modifying and resigning an APK is not difficult

Only server side code can be considered secure

Google recommendations for in-app purchases are
incomplete and misleading

By design most in-app uses cases are not possible to secure
Only secure use case: download impredictable content from server

Any question ? contact@securingapps.com

Bonus

Possible to debug in Android Studio a reversed app
Jadx can export to an Android Studio project
Add android:debuggable=’’true’’ in AndroidManifest.xml
Resign app
Deploy and start debugging from Android Studio

APK signature v2
Only on Android 7.0
To be continued …

