Abusing Android In-app Billing
feature thanks to a
misunderstood integration

R amnmmmm—m——s»,
®Developer background

®Worked last 12 years in Switzerland on security solutions
®Focus on mobile since 2010

®Recent OWASP Geneva co-chapter leader
®Freelance application security consultant

®Consulting to build security In software
O®GDPR: No, have a talk with @sadamiste for that
®Mobile
OWeb
®Cloud
®Internet Of Things
®Bitcoin/Blockchain W @Securingapps

https://twitter.com/securingapps

e ———
®1. Android In-app billing in a nutshell

®2. Real-life exploitation in a rather popular game:
geftting free credits
® Java reverse engineering
O®Writing a Java hook with Xposed framework
®Bytecode patching of application and redistribution

®3. Lessons learned

®4. Recommendations

R amnmmmm—m——s»,
0®Goal: show that Java reverse engineering can cause a loss of
value in real-life

®Target: Android In-app billing feature

®Allow developers to sell content in their app, e.g.
®subscribtions To magazines
®premium features
®exira content in games

®Payment is handled by Google
®Requires Google Play services
®No credit card data exposed to developers

®Documentation available at
https://developer.android.com/google/play/billing/index.ntml

https://developer.android.com/google/play/billing/index.html

1. Android In-app billing in a nutshell

isBillingSupported()

getPurchases()

Bundle(RESPONSE_CODE, INAPP_PURCHASE_ITEM_LIST,
INAPP_PURCHASE_DATA_LIST,
INAPP_DATA_SIGNATURE_LIST,
INAPP_CONTINUATION_TOKEN)

getSkuDetails()

Bundle(RESPONSE_CODE, DETAILS_LIST)

getBuylintent()

Bundle(RESPONSE_CODE, BUY_INTENT)

startintentSenderForResult()

Bundle(RESPONSE_CODE, INAPP_PURCHASE_DATA,
INAPP_DATA_SIGNATURE)

e ———
®(Used 1o be) rather popular game: PandaPop

® In-app purchases to buy credits
®New weapons
®Extra lifes

® Step 1: Download the APK archive: e.g. from apkpure.com
® Avoid executing this binary, or in an emulator

R amnmmmm—m——s»,
® Step 2: Prepare emulator

®1. We will use Genymotion emulator
® Fast (thanks to x86 image)
® Roofing possible in 1 click
® Free version available

®2. Install OpenGAPPS to have Google Play Services
® Sign-in with valid a gmail account
® Install Google Play Games
® Wait for the various Google applications to be updated

L —— 5
® Step 3: use jadx free tool to convert automatically
an APK in readable Java source code
® 1. converts Dalvik bytecode to Java bytecode
®2. decompiles Java bytecode in Java source code
®3. displays the results in an IDE for analysis

® Step 4: Look for instances of IInAppRillingService
®This interface cannot be renamed

Proguard, you must add the following line to your Proguard configuration file:

—keep class com.android.vending.billing.

®Nothing is obfuscated! A

https://github.com/skylot/jadx

o ——
® Step 5: Easily review related implementation classes

®Fascinating code in method purchaseProduct of Class
com.prime3l.GoogleIABPlugln
g

254 Log.w("Prime31", "CANNOT fetch sku type due to either inventory not being queried or it returned no valid skus.");
254 this._currentSkuBeingPurchased = sku;
255 if (sku.equalsIgnoreCase("android.test.purchased")) {
257 Log.i("Prime31", "fixing Google bug where they think the sku " + sku + " is a subscription. resetting to type inapp");
258 itemType = IabHelper.ITEM_TYPE_INAPP;
}

OStep 6: Find out what android. test.purchased means

®Google is our friend
Onitps://developer.android.com/google/play/billing/billing testing.himl

¢ android.test.purchased

When you make an In-app Billing request with this product ID, Google Play responds(as though you successfully purchased an item.
The response includes a JSON string, which contains fake purchase information (for example, ata . =

https://developer.android.com/google/play/billing/billing_testing.html

o ——
® Step 7: force value to android. test.purchased and

see what happens

®Llet’s write a hook that forces sku of purchaseProduct
to this value

210 public void purchaseProduct(final_String sku, final String developerPayload) {

® Using Xposed framework

®Overload the behavior of an application by intercepting calls in the
Dalvik virfual machine

®No change to the original apk file
® mplement a hook with Android Studio in an independent apk

T ———
®Prerequisites
®Rooted device to installed the Xposed libraries
®Emulator (tfo avoid smartphone bricking...)

®Install hooking framework in Genymotion device

®Install terminal application
® Drag/drop terminal.apk
® Start it and type su
® Check that root access is prompted and validate you are really root on the device

ODrog/drop XposedInstaller 3.1.5.apk

® Start it and choose install
® Reboot the Genymotion device

public class Tutorial implements IXposedHookLoadPackage {
public void handleLoadPackage(final LoadPackageParam lpparm) throws Throwable {

String ourPackageName
String ourClassToHook

"com.sgn.pandapop.gp";
"com.prime31l.GoogleIABPlugin";

if (!1lpparm.packageName.equals(ourPackageName)) {

return;
}
XposedBridge. log("Hooking loaded");
¢ flindAndHookMethod (ourClassToHook, lpparm.classLoader, “purchaseProduct”, String.class, String.class, (XC_MethodHook) beforeHookedMethod(param) - {

String s1 = (String) param.args([0];
String s2 = (String) param.args[1];
XposedBridge.log("On purchase product " + sl + " —— " + 52);
param.args[@] = "android.test.purchased";

i

}

OStep 8: Deploy hook
®Build hook apk with Android Studio
®Copy it to Genymotion device
® Activate hook in Xposed configuration panel
®Reboot Genymotion device
®Enjoy free credits

® Why does it work ?

®According to Google documentation, no signature is returned
with this test value so verification should fail

®The vulnerability is easy to find in the reversed source code

< © com.prime31.GooglelABProxyActivity 3 ® com.prime31.GooglelABPluginBase —
358 return true;
359 }
360 | try {
361 Purchase purchase = new Purchase(this.mPurchasingItemType, purchaseData, dataSignature);
362 try {
363 String sku = purchase.getSku();
364 if (this.mPurchaseListener != null) {
365 this.mPurchaselListener.onIabPurchaseCompleteAwaitingVerification(purchaseData, dataSignature);
366 }
367 if (lautoVerifySignatures || purchase.isTestSku() || Security.verifyPurchase(this.mSignatureBase64, purchaseData, dataSignature)) {
368 logDebug("Purchase signature successfully™erified.");
369 if (this.mPurchaselListener != null) {
370 this.mPurchaselListener.onIabPurchaseFinishe w IabResult(@, "Success"), purchase);
371 }
()

Security bypass

for test value

(] (]

, | in production code

119| public boolean isTestSku() {
120 return this._sku.startsWith("android.test");

}

..
@Step 9: Bytecode patching
®Hook requires a rooted smartphone
®We want to update the original apk to be able to deploy it on any device

®Android doesn’t use Java bytecode but Smali
®classes.dex contains the Java classes converted to Smali bytecode

®Smali bytecode can be transformed back and forth to human readble
iInstructions

®Principle
0 Get readable smali of original class
O CGet readable smali of hook
®Manual merge hook in original class
®Rebuild the APK with the new smali code (including signature)

e ———
®Convert APK to readable smali with command
®java -jar apktool.jar d your.apk

OEdit manually smali code in your/smali

®Recompiling with apktool loses native library, instead

® cp your.apk yourPatched.apk

®java -jar smali 2.1.1.jar your/smali -o classes.dex
(to compile smali code)

®z1ip yourPatched.apk classes.dex

®zip --delete yourPatched.apk "META-INE/*"
(to delete the existing signature)

® © prime31 — vi GooglelABPlugin.smali — 80x24

.method public purchaseProduct(Ljava/lang/String;Ljava/lang/String;)V

. locals 8

.param pl, "sku" # Ljava/lang/String;

.param p2, "developerPayload" # Ljava/lang/String;
.prologue

. line 160

const-string pl, "android.test.purchased"
invoke-virtual {p@}, Ljava/lang/Object;->getClass()Ljava/lang/Class;

move-result-object v4

invoke-virtual {v4}, Ljava/lang/Class;->getSimpleName()Ljava/lang/String;
move-result-object v4

const-string v5, "purchaseProduct"”

const/4 v6, 0x2

new-array v6, v6, [Ljava/lang/Object;

R amnmmmm—m——s»,
®Sign the APK with the key of your choice !

®Generate a new signing key with

keytool -genkey -v -keystore patch.keystore -alias patch -keyalg RSA -
keysize 2048 -validity 10000

Enter whatever your want in password and certificate info

.Slgn APK with jarsigner -verbose -sigalg SHAIwithRSA -digestalg SHAl -
keystore patch.keystore yourPatched.apk patch

®Ensure SigﬂGTUre Is OK jarsigner -verify -verbose -certs yourPatched.apk

®Deploy to a non rooted device and play ;)
®We could even publish in the Play Store under a new name ! =

@Signature v2 from
Android 7.0+

®V1 signature accepted Verty using 1
for compatilibty reasons O
Android 6.0 and below

Reject APK

®=> Just provide a vl signature in the APK

\J
» Install APK

R ———
® Never let debug code in production app
® Special test cases should be removed for official build |
® Poor design choice by Google to accept test value in production

® An access control decision client side is insecure by design

® Google documentation is misleading: cf
https://developer.android.com/google/play/billing/biling best practices.ntml

Validating purchase details

It's highly recommended to validate purchase details on a server that you trust. If you cannot use a server,

however, it's still possible to validate these details within your app on a device.

https://developer.android.com/google/play/billing/billing_best_practices.html

—
Vv

alidate on a device

If you cannot run your own server, you can still validate purchase details within your Android app.

Warning: This form of verification isn't truly secure. Because your purchase verification logic is bundled within your app, this logic becomes

compromised if your app is reverse-engineered.

You should obfuscate your Google Play public key and In-app Billing code so it's difficult for an attacker to reverse-engineer security protocols a
® in-app billing can’t be used to buy credits
® Designed to purchase original content that is not guessable

® Otherwise always possible to modify the counter via hooking
or bytecode patching

Consumadlg products

In contrasti\ou can implement consumption for products that can be made available for purchase multiple times.

Typically, these Pxoducts provide certain temporary effects. For example, the user's in-game character might gain life

points or gain extra gold coins in their inventory. Dispensing the benefits or effects of the purchased product in your

R amnmmmm—m——s»,
® Responsible disclosure: no one cared

® Game editor of PandaPop:
®/dev/null

® Prime 31: wrote the Android in-app purchase integration code

®Round 1: Quick feedback through their ficketing tool
® « This vulnerability doesn’t make any sense »
® « The developer should be checking the sku of the purchased product »

®Round 2: | buy the plugin 70 USD

® Unity plugin: C# wrapper on top of Java Android API
® | am supposed to receive integration documents

R amnmmmm—m——s»,
®Developer doc is in fact just a link to their basic welbsite

Purchase Validation

Google highly recommends always validating purchases on a secure server. The
plugin will do on device validation for you but Android apps are very easily
hacked so this should not be relied on.

®Yet AP| supports signature verification on an external server
®But provided C# demo does not use it

®Round 3: detailed slides back to Prime 31
O« Excellentl Many thanks for these, | look forward to reading them today »

®Since then: /dev/null
®As a customer | don’t get any fix

R amnmmmm—m——s»,
® 0. Use Proguard obfuscation to slow down a reverser

® 1. Use NDK o embed sensitive logic in C code
® With JNI possible to call C librairies via the native keyword
® Much more effort to reverse and patch binary code (e.g ARM)

® 2. Use a backend for validating purchases
® Still possible to hook/patch the response of the server

® 3. Only sell « real » content
® and not something easy to guess like a counter
® e.g Angry Birds sell exira levels
® and they also use NDK for calls to validation server

239
241
247
250
251
260
270

private static native void paymentFinished(long j, String str, int i, String str2, String str3);
private static native void restoreDone(long j);

private static native void restoreFailed(long j);

private static native void skuDetailsLoaded(long j, SkuDetails[] skuDetailsArr);

public GooglePlayPaymentProvider(long j) {
this.f5016b = j;
Globals.registerActivityListener((IActivityListener) this);
IntentFilter intentFilter = new IntentFilter("com.android.vending.billing.PURCHASE_UPDATED");
this.f5021g = new C18591(this);
this.f5017c.registerReceiver(this.f5021g, intentFilter);
new Thread(new C18602(this)).start();

R amnmmmm—m——s»,
® Android Java reverse engineering is really easy with jadx

® You cannot trust the Java code running in your Android app
®Modifying and resigning an APK is not difficult

® Only server side code can be considered secure

® Google recommendations for in-app purchases are
iIncomplete and misleading
®By design most in-app uses cases are not possible to secure
®Only secure use case: download impredictable content from server

Any question ?

contact@securingapps.com

http://www.securingapps.com/

®Possible to debug in Android Studio a reversed app
® Jadx can export to an Android Studio project
O®Add android:debuggable=’"true’’ INn AndroidManifest.xml
®Resign app
®Deploy and start debugging from Android Studio

